Research
YNU-NLP Lab focuses on the exciting field of Natural Language Processing (NLP). We study a variety of topics including sentiment analysis, multimodal systems, machine learning, graph neural networks, and dialogue systems. Our goal is to improve the way computers understand and interact with human language. By working together, our team strives to create smarter and more user-friendly technologies.
All
2022
Hierarchical template transformer for fine-grained sentiment controllable generation
Information Processing & Management
·
01 Sep 2022
·
doi:10.1016/j.ipm.2022.103048
Explainable detection of adverse drug reaction with imbalanced data distribution
PLOS Computational Biology
·
15 Jun 2022
·
doi:10.1371/journal.pcbi.1010144
Interactive capsule network for implicit sentiment analysis
Applied Intelligence
·
20 May 2022
·
doi:10.1007/s10489-022-03584-3
Hierarchical BERT with an adaptive fine-tuning strategy for document classification
Knowledge-Based Systems
·
01 Feb 2022
·
doi:10.1016/j.knosys.2021.107872
Contextual sentiment embeddings via bi-directional GRU language model
Knowledge-Based Systems
·
01 Jan 2022
·
doi:10.1016/j.knosys.2021.107663
2021
Mirror Distillation Model with Focal Loss for Chinese Machine Reading Comprehension
2021 International Conference on Asian Language Processing (IALP)
·
11 Dec 2021
·
doi:10.1109/IALP54817.2021.9675272
Joint Model of Triple Relation Extraction with Label Embeddings
2021 International Conference on Asian Language Processing (IALP)
·
11 Dec 2021
·
doi:10.1109/IALP54817.2021.9675156
A multi-dimensional relation model for dimensional sentiment analysis
Information Sciences
·
01 Nov 2021
·
doi:10.1016/j.ins.2021.08.052
Conciseness is better: Recurrent attention LSTM model for document-level sentiment analysis
Neurocomputing
·
01 Oct 2021
·
doi:10.1016/j.neucom.2021.07.072
Learning sentiment sentence representation with multiview attention model
Information Sciences
·
01 Sep 2021
·
doi:10.1016/j.ins.2021.05.044
Personalized sentiment classification of customer reviews via an interactive attributes attention model
Knowledge-Based Systems
·
01 Aug 2021
·
doi:10.1016/j.knosys.2021.107135
Variational Autoencoder with Interactive Attention for Affective Text Generation
Natural Language Processing and Chinese Computing
·
01 Jan 2021
·
doi:10.1007/978-3-030-88483-3_9
Accelerating Pretrained Language Model Inference Using Weighted Ensemble Self-distillation
Natural Language Processing and Chinese Computing
·
01 Jan 2021
·
doi:10.1007/978-3-030-88480-2_18
2020
Adversarial learning of sentiment word representations for sentiment analysis
Information Sciences
·
01 Dec 2020
·
doi:10.1016/j.ins.2020.06.044
Using a Pre-Trained Language Model for Medical Named Entity Extraction in Chinese Clinic Text
2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)
·
01 Jul 2020
·
doi:10.1109/ICEIEC49280.2020.9152257
Pipelined Neural Networks for Phrase-Level Sentiment Intensity Prediction
IEEE Transactions on Affective Computing
·
01 Jul 2020
·
doi:10.1109/TAFFC.2018.2807819
Tree-Structured Regional CNN-LSTM Model for Dimensional Sentiment Analysis
IEEE/ACM Transactions on Audio, Speech, and Language Processing
·
01 Jan 2020
·
doi:10.1109/TASLP.2019.2959251
A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion
IEEE Access
·
01 Jan 2020
·
doi:10.1109/ACCESS.2020.3035347
2019
CIEA: A Corpus for Chinese Implicit Emotion Analysis
2019 International Conference on Asian Language Processing (IALP)
·
01 Nov 2019
·
doi:10.1109/IALP48816.2019.9037667
2018
Using a stacked residual LSTM model for sentiment intensity prediction
Neurocomputing
·
01 Dec 2018
·
doi:10.1016/j.neucom.2018.09.049
Refining Word Embeddings Using Intensity Scores for Sentiment Analysis
IEEE/ACM Transactions on Audio, Speech, and Language Processing
·
01 Mar 2018
·
doi:10.1109/TASLP.2017.2788182
Deep Fusion Feature Learning Network for MI-EEG Classification
IEEE Access
·
01 Jan 2018
·
doi:10.1109/ACCESS.2018.2877452
An Attentive Neural Sequence Labeling Model for Adverse Drug Reactions Mentions Extraction
IEEE Access
·
01 Jan 2018
·
doi:10.1109/ACCESS.2018.2882443
2017
Refining Word Embeddings for Sentiment Analysis
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing
·
01 Jan 2017
·
doi:10.18653/v1/D17-1056
Refining Word Embeddings for Sentiment Analysis
Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing
·
01 Jan 2017
·
doi:10.18653/v1/d17-1056
2016
Community-Based Weighted Graph Model for Valence-Arousal Prediction of Affective Words
IEEE/ACM Transactions on Audio, Speech, and Language Processing
·
01 Nov 2016
·
doi:10.1109/TASLP.2016.2594287
Locally weighted linear regression for cross-lingual valence-arousal prediction of affective words
Neurocomputing
·
01 Jun 2016
·
doi:10.1016/j.neucom.2016.02.057
Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
·
01 Jan 2016
·
doi:10.18653/v1/P16-2037
Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
·
01 Jan 2016
·
doi:10.18653/v1/p16-2037
Building Chinese Affective Resources in Valence-Arousal Dimensions
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
·
01 Jan 2016
·
doi:10.18653/v1/n16-1066
2015
A locally weighted method to improve linear regression for lexical-based valence-arousal prediction
2015 International Conference on Affective Computing and Intelligent Interaction (ACII)
·
01 Sep 2015
·
doi:10.1109/ACII.2015.7344604
Predicting Valence-Arousal Ratings of Words Using a Weighted Graph Method
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)
·
01 Jan 2015
·
doi:10.3115/v1/p15-2129
2014
Applying MapReduce Framework to Peer-to-Peer Overlay Network
2014 International Conference on Service Sciences
·
01 May 2014
·
doi:10.1109/ICSS.2014.21
2010
Tracking objects through occlusions using improved Kalman filter
2010 2nd International Conference on Advanced Computer Control
·
01 Jan 2010
·
doi:10.1109/ICACC.2010.5487263
A moving objects detection algorithm using iterative division and Gaussian mixture model
2010 2nd International Conference on Advanced Computer Control
·
01 Jan 2010
·
doi:10.1109/ICACC.2010.5487264